
Some Axioms and Issues in the UFO Dynamic Analysis Framework

Clinton Jeffery
Department of Computer Science

 New Mexico State University
jeffery@cs.nmsu.edu

Mikhail Auguston

Department of Computer Science
Naval Postgraduate School

maugusto@nps.navy.mil

Abstract
UFO is a framework for constructing dynamic analysis

tools that require varying degrees of access and control
over program executions. UFO combines run time and
post-mortem techniques to perform required analyses.
Declarative and imperative notations are provided for
constructing monitors at appropriate semantic levels.
Multiple analyses can be bundled into a given monitor,
and multiple monitors can be applied to a given target
program execution. This paper presents the central tenets
of UFO, along with our current set of research
challenges.

1. Motivation
Automatic debugging and program visualization are

two of the most promising application areas of dynamic
analysis, with potential to impact on crucial areas of
software development and maintenance. We believe the
slow rate of advancement in these areas is due to the high
cost of developing new tools. We have previously focused
on a language (FORMAN) and an architecture (Alamo)
that reduce these costs [1][2][4]. FORMAN is a special-
purpose language for expressing dynamic analyses; it has
been implemented previously for subsets of Pascal and C.
Alamo is a lightweight architecture for program execution
monitoring; it has been implemented for a subset of C and
for the virtual machine used by the Icon and Unicon
programming languages. The virtual machine
implementation of Alamo is attractive for research
because it provides high performance and superior ease of
use for a full-size “real” programming language, allowing
testing on large programs and the possibility of deploying
successful tools to a user community.

We recently merged the FORMAN and Alamo efforts
to produce UFO (Unicon-FORMAN), a framework for
rapidly constructing dynamic analyzers [3][4]. We have
used UFO to construct a variety of simple automatic
debuggers and visualization tools that run well on small
and medium sized applications. Our next efforts must
walk the tightrope of scaling up to production tools for
large applications, while retaining the power and ease of
use that are characteristic of the current research UFO
system. With that in mind, this paper presents the central
tenets of the UFO system, and concludes with an

exploration of the current research problems and our plans
to address them.

2. Axioms
UFO is primarily an implementation of FORMAN

built on top of the Alamo monitor architecture. Early
experiments showed the marriage to improve FORMAN
speed by two orders of magnitude and shorten the lines of
code necessary to write Alamo monitors by one order of
magnitude. This section sketches the primary
characteristics of UFO.

• A precise program behavior model, in which
semantics of the monitored language are mapped
to directed acyclic graphs of events. These graphs
are defined using an event grammar, a notation
that approximates the semantics of the language to
be monitored. The behavior model is essential to
provide general purpose capabilities for a wide
range of tools.

• A declarative special-purpose monitoring
language, tailored specifically for dynamic
analyses expressed in terms of patterns within the
graphs of events. This component is necessary to
reduce the cost of developing new tools. Section 4
provides some examples; shorthand refinements to
improve the syntax could be explored after the
main semantics and performance issues are
resolved.

• An hybrid execution model, in which most
analysis work is performed at run-time, and more
complex analyses transparently combine run-time
collection and partial analysis with more extensive
post-mortem analysis. This element is necessary
but not sufficient by itself to achieve acceptably
high performance for large scale production
systems. This important element is new in UFO,
compared with previous FORMAN and Alamo
efforts. It provides high performance.

• Automatic instrumentation provided by special-
purpose virtual machine support; static or dynamic
configuration of VM instrumentation; no
recompilation, relinking, or alteration of target
program executables to be monitored. This
provides substantial ease of use.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Some Axioms and Issues in the UFO Dynamic Analysis Framework

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
in the Proceedings of Workshop on Dynamic Analysis, ICSE’03, 25th International Conference on
Software Engineering, Portland, Oregon, May 3-11, 2003, pp.45-48

14. ABSTRACT
UFO is a framework for constructing dynamic analysis tools that require varying degrees of access and
control over program executions. UFO combines run time and post-mortem techniques to perform
required analyses. Declarative and imperative notations are provided for constructing monitors at
appropriate semantic levels. Multiple analyses can be bundled into a given monitor, and multiple monitors
can be applied to a given target program execution. This paper presents the central tenets of UFO, along
with our current set of research challenges.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3. Some Research Issues and Challenges
UFO’s chief design goals revolve around notational

power and ease of use. The current prototype
implementation of UFO [5][5] processes millions of
events per minute. But, for large programs higher
performance is needed. This goal motivates several open
problems we are pursuing.

Minimizing the number of context switches. UFO’s
run-time execution model is based on lightweight
coroutine switches between monitors and the program
being observed. This separation is a compromise between
intrusive in-line single-thread execution used in low-cost
analysis tools such as profilers, and the complete
separation imposed by high-cost analysis tools such as
debuggers. One research goal is to retain the abstraction
and low-intrusion benefits of the coroutine model without
having to pay (so much) for it.

Virtual machine configuration and customization. The
VM instrumentation can be turned off at multiple levels,
including compile-time via #ifdef and run-time via a
dynamic filter that controls whether instrumented or
uninstrumented versions of functions are called, and
whether an event report (via lightweight context switch) is
performed for a given instrumentation site. This
configuration can be further exploited by having the UFO
compiler generate a custom VM with exactly the
instrumentation it needs for a particular monitoring
application. The central VM interpreter function (interp())
can benefit from a finer granularity of customization than
the current instrumented-versus-uninstrumented options;
it is critical to performance and contains 30 of the 119
types of events instrumented in the VM. Generating a
custom VM may greatly improve monitoring performance
within this VM interpreter loop. The VM generation
system needs to make it easy and convenient for the UFO
compiler to generate custom VM’s and associate them
with generated analyzers in a persistent manner. Custom
VM’s should be shareable by monitors that use the same
events.

Inter-monitor optimizations. When multiple analyses
are compiled together, substantial cost savings might be
obtained by factoring common tasks such as event data
collection. For example, a profiler that computes
summaries and a visualizer that shows run-time details
might operate on the same information, and might even
share some common analysis structures.

Meta-events and analysis hierarchies. UFO’s event
model composes higher level events from lower level
ones, but analysis tools create additional information

which may constitute the input for higher level analyses.
This facilitates the sharing of analysis information among
tools, reducing the cost of running multiple tools.

4. Examples of debugging rules
Alamo's goal was to reduce the difficulty of writing
execution monitors to be just as easy as writing other
types of application programs. UFO supports FORMAN's
more ambitious goal of reducing the difficulty of writing
automatic debuggers to the task of specifying generic
assertions about program behavior.

This section presents formalizations of typical
debugging rules. UFO supports traditional precondition
checking, or print statement insertion, without any
modification of the target program source code. This is
especially valuable when the precondition check or print
statement is needed in many locations scattered
throughout the code.

Example #1: Tracing. Probably the most common
debugging method is to insert output statements to
generate trace files, log files, and so forth. It is possible to
request evaluation of arbitrary Unicon expressions at the
beginning or at the end of events. The virtual machine
evaluates these expressions at the indicated time
moments.

 FOREACH A: func_call &
 A.func_name == “my_func”
 FROM prog_ex
 A.value_at_begin(
 write(“entering my_func, value of X is:”, X)) AND
 A.value_at_end(
 write(“leaving my_func, value of X is:”, X))

 This debugging rule causes calls to write() to be
evaluated at selected points at run time, just before and
after each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a
premise of accumulating the number of times a behavior
occurs, or the amount of time spent in a particular activity
or section of code. The following debugging rule
illustrates such computations over the event trace.

 SAY("Total number of read() statements: "
 CARD[r: input & r.filename == "xx.in"
 FROM prog_ex]
 "Elapsed time for read operations is: "
 SUM [r: input & r.filename == "xx.in"
 FROM prog_ex APPLY r.duration])

Example #3: Pre- and Post- Conditions. Typical use of
assertions includes checking pre- and post-conditions of
function calls.

 FOREACH A:func_call & A.func_name==”sqrt”
 FROM prog_ex
 A.paramlist[1] >=0 AND
 abs(A.value*A.value-A.paramlist[1]) < epsilon
 WHEN FAILS SAY(“bad sqrt(“ A.paramlist[1]
 “) yields ” A.value)

4.1 Generic Bug Descriptions
Another prospect is the development of a suite of

generic automated debugging tools that can be used on
any Unicon program. UFO provides a level of abstraction
sufficient for specifying typical bugs and debugging rules.

Example #4: Detecting Use of Un-initialized Variables.
Reading an un-initialized variable is permissible in
Unicon, but often leads to errors. In this debugging rule
all variables in the target program are checked to ensure
that they are initialized before they are used.

FOREACH V: variable FROM prog_ex

 FIND D: lhp FROM V.prev_path
 D.source_text == V.source_text
 WHEN FAILS SAY(" uninitialized variable "
 V.source_text)

Example #5: Empty Pops. Removing an element from
an empty list is typical of expressions that fail silently in
Unicon. While this can be convenient, it can also be a
source of difficult to detect logic errors. This assertion
assures that items are not removed from empty lists.

FOREACH a: func_call &
 a.func_name == "pop" AND
 a.value_at_begin(*a.paramlist[1] == 0)
 SAY("Popping from empty list at event " a)

5. Implementation Issues

The most important of these issues is the translation
model by which FORMAN assertions are compiled down
to Unicon Alamo monitors. Debugging activities are
written as if they have the complete post-mortem event
trace, the DAG with events, event attributes, and
precedence and containment relations, available for
processing. This generality is extremely powerful;
however, for most practical uses we have seen, assertions
can be compiled down into monitors that execute entirely
at runtime. Runtime monitoring saves enormously on
memory and I/O requirements and is the key to practical
implementation. For those assertions that require post-

mortem analysis, the UFO runtime system computes a
projection of the execution DAG necessary to perform the
analysis.
The UFO compiler generates Alamo Unicon monitors
from FORMAN rules. Each FORMAN statement is
translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as
coroutines with the Unicon target program.

Monitors generated by the UFO compiler reduce
complex assertions to the single event loop. Keeping
event detection in a single loop allows uniform processing
of multiple event types used by multiple monitors. The
code generated by the UFO compiler integrates event
detection, attribute collection, and aggregate operation
accumulation in the main event loop.

 Assertions in UFO may use nested quantifiers
implying two nested loops, so code generation addresses
this issue by flattening the main loop structure, and
postponing assertion processing until required
information is available. An hybrid code generation
strategy performs runtime processing whenever possible,
delaying analyses until post-mortem time when necessary.
Different assertions require different degrees of trace
projection storage; code responsible for trace projection
collection is also arranged within the main loop. The
following generation template gives a flavor of the UFO
trace projection mechanism.

Rules with two nested quantifiers of the form

Quantifier A: Pattern_A

Quantifier B: Pattern_B FROM A
Body

 utilize a monitor whose main loop follows the pattern:

 Main Loop
 Maintain stack of nested A events

Accumulate events B in a B-list
 If end of event A
 Loop over B-list
 Do Body
 Endif
 If stack of A is empty
 Destroy B-list
 End of Main Loop

This requires accumulation of a trace projection for B-
events and may cause a mild overhead at the run time.

5.1 Optimization Issues
 The UFO approach combines an optimizing compiler
for monitoring code with efficient run-time event
detection and reporting. Since we know at compile time

all necessary event types and attributes required for a
given UFO rule, the generated Unicon monitor can be
very selective about the behavior that it observes.
 For certain kinds of UFO constructs, such as nested
quantifiers, the monitor must accumulate a sizable
projection of the complete event trace and postpone
corresponding computations until all required information
is available. The presence of the previous_path and
following_path attributes in UFO rules triggers this kind
of optimization; previous_path and following_path are
used in rules which specify preceding or following
contexts for events of interest.

For further optimization, especially in the case of
programs containing a significant number of modules, the
following FORMAN construct limits event processing to
events generated within the bodies of functions
F1, F2, … , Fn.

WITHIN F1, F2, … , Fn DO
 Rules
END_WITHIN

This provides for monitoring only selected segments of
the event trace.

Unicon expressions included in the value_at_begin
and value_at_end attributes are evaluated at run time.

Some other optimizations implemented in this version
are:

• only attributes explicitly used in the UFO rule are
collected in the generated monitor;

• an efficient mechanism for event trace projection
management, which disposes from the stored
trace projection those events that are no longer
used after a certain rule has been fully evaluated;

• both event types and context conditions are used
to filter events for the processing.

UFO’s goal of practical application to real-sized
programs has motivated several improvements to the
already carefully-tuned Alamo instrumentation of the
Unicon virtual machine. We are working on additional
optimizations.

We expect that the most promising optimizations are
within the generation of instances of Virtual Machine
tailored for a particular monitoring task.

6. Conclusions
 The architecture employed in UFO could be adapted
for a broad class of languages such as those supported by
the Java VM or the .net VM. Our approach to dynamic
analysis uniformly represents many types of debugging-
related activities as computations over traces, including
assertion checking, profiling and performance
measurements, and the detection of typical errors. We
have integrated event trace computations into a
monitoring architecture based on a virtual machine.

Preliminary experiments demonstrate that this
architecture is scalable to real-world programs.
 One of our next steps is to build a repository of
formalized knowledge about typical bugs in the form of
UFO rules, and gather experience by applying this
collection of assertions to additional real-world
applications. There remain many optimizations that can
improve the monitor code generated by the UFO
compiler; for example, merging common code used by
multiple assertions in a single monitor, and generating
specialized VMs adjusted to the generated monitor.

Acknowledgements
 This work has been supported in part by U.S. Office of
Naval Research Grant # N00014-01-1-0746, by U.S.
Army Research Office Grant # 40473--MA-SP, and by
the National Library of Medicine.

References

[1] M. Auguston, Program Behavior Model Based on Event

Grammar and its Application for Debugging Automation,
in the Proceedings of the 2nd International Workshop on
Automated and Algorithmic Debugging, AADEBUG'95,
Saint-Malo, France, May 22-24, 1995, pp. 277-291.

[2] Clinton L. Jeffery, Program Monitoring and Visualization:
an Exploratory Approach. Springer, New York, 1999.

[3] M. Auguston, A. Gates, M. Lujan, "Defining a Program
Behavior Model for Dynamic Analyzers", in the
Proceedings of the 9th International Conference on
Software Engineering and Knowledge Engineering,
SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[4] M. Auguston, “Lightweight semantics models for program
testing and debugging automation”, in Proceedings of the
7th Monterey Workshop on "Modeling Software System
Structures in a Fast Moving Scenario", Santa Margherita
Ligure, Italy, June 13-16, 2000, pp.23-31.

[5] M. Auguston, C. Jeffery, and S. Underwood. “A
Framework for Automatic Debugging”, IEEE 17th Intl.
Conf. on Automated Software Engineering, Edinburgh,
September 2002, IEEE Computer Society Press, pp.217-
222

[6] C. Jeffery and M. Auguston. “Towards Fully Automatic
Execution Monitoring”. Monterey Workshop 2002,
Venice, October 2002, sponsored by US Army Research
Office and NSF, pp.232-243

[7] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and
Robert Parlett, "Programming with Unicon",
http://unicon.sourceforge.net.

[8] Ralph E. Griswold and Madge T. Griswold, The Icon
Programming Language, 3rd edition. Peer to Peer
Communications, San Jose, 1997.

http://unicon.sourceforge.net/

	Motivation
	Axioms
	Some Research Issues and Challenges
	Examples of debugging rules
	Generic Bug Descriptions

	Implementation Issues
	Optimization Issues

	Conclusions
	Acknowledgements

